
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x
1

PAPER Special Section on Formal Approach

Efficient Multi-Valued Bounded Model Checking for LTL
over Quasi-Boolean Algebras∗

Jefferson O. ANDRADE†a) and Yukiyoshi KAMEYAMA††b), Members

SUMMARY
Multi-valued Model Checking extends classical, two-valued

model checking to multi-valued logic such as Quasi-Boolean logic.
The added expressivity is useful in dealing with such concepts as
incompleteness and uncertainty in target systems, while it comes
with the cost of time and space. Chechik and others proposed an
efficient reduction from multi-valued model checking problems to
two-valued ones, but to the authors’ knowledge, no study was
done for multi-valued bounded model checking.

In this paper, we propose a novel, efficient algorithm for
multi-valued bounded model checking. A notable feature of our
algorithm is that it is not based on reduction of multi-values into
two-values; instead, it generates a single formula which represents
multi-valuedness by a suitable encoding, and asks a standard SAT
solver to check its satisfiability. Our experimental results show
a significant improvement in the number of variables and clauses
and also in execution time compared with the reduction-based
one.
key words: multi-valued model checking; bounded model check-
ing; quasi-boolean logic

1. Introduction

Model Checking is an automatic technique for verify-
ing temporal properties of finite transition systems [2].
Multi-valued model checking extends it by using multi-
valued logic [3], [4] instead of two-valued one. Multi-
valuedness gives us a more natural way to express such
concepts as incompleteness, uncertainty, authenticity,
capability, and many others, and has been proved use-
ful in various fields of verification.

This extra expressivity, however, comes at the cost
of performance and/or space, and many researchers
have investigated this problem. Among others, Chechik
et al. [5] proposed (1) an embedding of Quasi-Boolean
algebra (Quasi-Boolean logic) into Boolean algebra,
and (2) Multi-valued Decision Diagrams (MDD) as an
extension of Binary Decision Diagrams (BDD) [6]. By
combining them, they obtained an efficient symbolic
model checker for Quasi-Boolean logics. Nakajima [7]

†The author is with the Department of Informatics,
Campus Serra, Federal Institute of Espírito Santo.

††The author is with the Department of Computer Sci-
ence, University of Tsukuba.

∗This paper is a revised and extended version of the
paper presented at International Symposium on Automated
Technology for Verification and Analysis, October 20-23,
2008, Seoul, Korea [1].

a) E-mail: joandrade@ifes.edu.br
b)E-mail: kameyama@acm.org

DOI: 10.1587/transinf.E0.D.1

s0:IDLE

received=F
sent=F
error=F

s1:RECEIVING

received=S
sent=F
error=F

s2:RECEIVED

received=T
sent=F
error=F

s6:ERROR

received=S
sent=F
error=T

N

s3:SENDING

received=T
sent=S
error=F

s4:SENT

received=T
sent=T
error=F

s5:DELAY

received=T
sent=S
error=S

N

S

S

Fig. 1 A multi-valued model for a simple message relay system.

applied their technique to verify a non-trivial real-world
software specification.

This paper investigates Bounded Model Checking
(BMC) [8] for multi-valued logic. In particular, we pro-
pose a novel algorithm for multi-valued BMC problems
where both models and specifications are defined over
Quasi-Boolean algebras.

The fundamental problem to build such an algo-
rithm is that the standard reduction method is quite
inefficient, where reduction means a way to represent a
multi-valued formula by many two-valued ones (which
are called slices). Intead of generating many slices, our
algorithm generates a single two-valued formula that
represents these slices with clever encoding. Based on
our prototype implemenetation, our algorithm shows a
significant improvement in the number of variables and
clauses and also in runtime compared with reduction-
based one.

The rest of this paper is organized as follows. Sec-
tion 2 introduces a motivating example, and Section 3
introduces basic concepts. Section 4 describes our al-
gorithms, and Section 5 shows our experiments with a
prototype implementation. Finally, Section 6 provides
our conclusion.

Copyright c© 200x The Institute of Electronics, Information and Communication Engineers

2
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

2. Example

As a motivating example, we introduce a simple mes-
sage relay system inspired by Nakajima’s example [7].
Fig. 1 shows our model for the system, where IDLE etc.
are states, received=F etc. are the values of the vari-
ables in each state. The model is similar to a Kripke
structure, however some transitions and values are an-
notated with an element of Quasi-Boolean algebra such
as T (true), S (should), N (should not), and F (false).
Unannotated transitions are assumed to have T as its
annotation.

Let us explain the model. Initially, the system is
IDLE. It can remain IDLE or transit to RECEIVING. Af-
ter the message has been RECEIVED, the system starts
SENDING. After transmission is completed, the system
returns to IDLE. The system should not present any
DELAY on the transmission, but it is possible (not pro-
hibited) that DELAY occurs in exceptional situations.
If there is a delay, the system should eventually resume
transmission, but we cannot say it must resume trans-
mission, since the environment may not allow it. The
system should not lose the received data, but it is not
impossible that an ERROR occurs. After data loss, the
system should return to IDLE.

We want to specify the following properties on this
system using Linear-time Temporal Logic (LTL):

1. All messages received must be sent eventually.
G(received → F sent)

2. The system must always resume from an error.
G(error → F(¬error ∧ ¬received ∧ ¬sent))

3. The system should not begin a transmission unless
a message has been received.
G((¬received ∧ ¬sent) ∨ F(received R ¬sent))

Note that the truth values of the formulas above
may be N or S, and therefore they are actually formulas
of multi-valued logic. †

The method in this paper allows one to verify these
properties even if the model is expressed over a Quasi-
Boolean Algebra.

3. Basic Definitions and Results

Classical model checking algorithms are defined for
Kripke structures and specifications written as tem-
poral logic formulas. In multi-valued model checking,
Kripke structures and temporal logic are extended so
that the domain of truth values is a multi-valued one.
Fitting [3], [4] showed that many of the desired proper-
ties in multi-valued logic are obtained if the truth values
form a complete lattice. In addition, to preserve the re-
lationship between logic operators and their meaning,

†The multi-valued logic used here will be later shown in
Fig. 2(e).

we require the domain to satisfy the distributivity laws
(for conjunction and disjunction) and De Morgan’s laws
(for complement). Boolean Algebra satisfies these con-
ditions, but they are too restrictive for practical pur-
poses. Quasi-Boolean Algebra is a minimal structure
that satisfies these conditions, and is widely used in
various areas which need multi-valued logic.

In this section, we review its definition and appli-
cation to multi-valued model checking.

3.1 Quasi-Boolean Algebra

A lattice L = 〈L,v〉 is a partially ordered set in which
any two elements x and y have a least upper bound
(join, denoted by x t y), and a greatest lower bound
(meet, denoted by xuy). In this paper, we consider only
finite lattices, namely, the set L of elements should be
finite. A finite lattice has the greatest element (denoted
by >) and the least element (denoted by ⊥).

Alternatively, a lattice may be defined as an alge-
braic structure with the underlying set L and opera-
tions u and t, i.e., L = 〈L,u,t〉.

Definition 1 (Distributive Lattices). We say a lattice
L = 〈L,v〉 is a distributive lattice iff the following
properties hold for all x, y, z ∈ L.

x u (y t z) = (x u y) t (x u z)
x t (y u z) = (x t y) u (x t z) Distributivity

It is easy to see that every finite distributive lattice
is a complete lattice, that is, the least upper bound and
the greatest lower bound for any set of elements exist.

Definition 2 (Quasi-Boolean Algebra). Given a finite
distributive lattice L = 〈L,u,t〉, Quasi-Boolean alge-
bra (QBA) is a tuple QL = 〈L,u,t,¬〉, where ¬ is
a unary operator called quasi-boolean complement for
which the following properties hold for all x, y ∈ L.

¬(x u y) = ¬x t ¬y
¬(x t y) = ¬x u ¬y De Morgan laws

¬¬a = a Involution
x v y iff ¬y v ¬x Anti-monotonicity

Fig. 2 shows some QBA of practical interest.
Fig. 2(a) shows a 3-valued logic with truth values F
(false), U (unknown) and T (true), where the negation
of U is U itself. Fig. 2(b) extends it to n+1 values with
a total order. Figs. 2(c) and 2(d) are QBAs obtained
by the products L2 × L2 and L3 × L3, resp. Fig. 2(e)
shows a QBA used in the example of the previous sec-
tion. It has six truth values T, F, N (“should not”),
DK (“don’t know”), DC (“don’t care”), and S (“should”).
It is interesting to note that negation of S is N, while
negation of DK is DK itself.

All Boolean Algebras (BA) are QBAs. Fig. 2(c)
and Fig. 2(f) are Boolean algebras with 22 elements,
and 23 elements, resp, called order-2 and order-3

ANDRADE and KAMEYAMA: MULTI-VALUED BOUNDED MODEL CHECKING
3

T

U

F

(a) L3
0

1

2

n

(b) Ln+1

FT

TT

TF

FF

(c) L2,2 = L2 × L2

FU

FT UU

UT

UF

TF

TU

FF

TT

(d) L3,3 = L3 × L3

N

DK DC

S

T

F

(e) Q6

{}

{1} {2} {3}

{1,2} {1,3} {2,3}

{1,2,3}

(f) B3 = 〈2J3 ,⊆〉, J3 = {1, 2, 3}

Fig. 2 Examples of lattices with practical interest. The gray
nodes denote join-irreducible elements of each lattice.

Boolean Algebras.
Chechik et al. [5] embeds QBAs into BAs using

the notion of join-irreducible elements defined below.

Definition 3 (Join-Irreducible Element). Let Q =
〈L,u,t,¬〉 be a QBA. An element j of L is join-
irreducible iff j is not the least element ⊥, and for any
a, b ∈ L, a t b = j implies a = j or b = j.

Definition 4 (Embedding of QBA). Let Q = 〈L,u,
t,¬〉 be a QBA, and JQ be the set of join-irreducible
elements in Q. The embedding em : L→ 2JQ is defined
by em(`) = {j ∈ JQ | j v `}.

For instance, in the 3-valued lattice L3, em maps
F, U, and T, to {} {U}, and {U,T}, resp.

The embedding em is injective, and preserves the
greatest and least elements, meet, and join where we
regard 2JQ as a Boolean Algebra ordered by set inclu-
sion. The embedding is not necessarily surjective, and
may not preserve negation. For L3, negation of U is U,
but the complement of {U} in 2JQ is {>}, which is not
in the image of em.

The embedding gives us a way of representing an
element of QBA as a bit sequence. Let j1, . . . , jn be an
enumeration of JQ (we fix the order of these elements.)
We represent ` ∈ L by a bit-sequence of length n, where

the ith bit of the bit-sequence is 1 iff ji v `, for 1 ≤ i ≤
n. The bit-sequence is written as, for instance,]110.

3.2 Multi-Valued Model Checking

To perform multi-valued model checking (mvMC)
based on QBA, we need to extend Kripke structures
and LTL to their multi-valued counterparts.

Let Q = 〈L,u,t,¬〉 be a QBA throughout this
subsection. Multi-valued Kripke structures [3] extend
2-valued one as follows.

Definition 5 (Multi-Valued Kripke Structure).
A multi-valued Kripke structure (mvKS) over Q is a
tuple M = 〈S, I,R,AP,V〉 such that:

• S is a finite set of states.
• I : S → L gives the initial states.
• R : S × S → L gives the transition relation.
• AP is a finite set of atomic propositions.
• V : S × AP → L is the valuation function for an

atom at a state.

Note that the codomain of I, R and V is L by
which multi-valuedness may be introduced. For in-
stance, I(s0) = U means that it is undefined (unspeci-
fied) that s0 is an initial state or not. We say an mvKS
M is total if (

⊔
s∈S I(s)) = >, and, for all s ∈ S,

(
⊔

s′∈S R(s, s′)) = >. Following [2], [8], [9], we assume
that every mvKS is total throughout the present paper.

Definition 6 (Path). A path over a mvKS is a map-
ping π : N → S where N is the set of natural numbers.
The suffix πj of a path π denotes the path such that
πj(i) = π(i+ j) for i ≥ 0.

To express specifications of systems, we use
mvLTL, a multi-valued extension of Linear-time Tem-
poral Logic, which was first introduced in [10].

Definition 7 (Formulas of mvLTL). Given a mvKS
M based on a QBA Q, a formula in mvLTL is defined
as follows:

φ, ψ ::= ` | p | ¬φ | φ ∧ ψ | φ ∨ ψ | Xφ | Fφ | φ U ψ

where ` ∈ L (an element of QBA), and p ∈ AP (an
atomic proposition in M).

We may introduce other temporal operators such
as G and R using X, F, and U.

Definition 8 (Semantics of mvLTL). Let M be a
mvKS over Q as before, π be a path on M, and φ be
a mvLTL formula. We define the interpretation of φ
w.r.t. π in M (written π |= φ) as an element of Q as
follows:

4
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

π |= `
def
= ` for ` ∈ L

π |= p
def
= V(π(0), p) for p ∈ AP

π |= ¬φ def
= ¬(π |= φ)

π |= φ ∧ ψ def
= (π |= φ) u (π |= ψ)

π |= φ ∨ ψ def
= (π |= φ) t (π |= ψ)

π |= Xφ
def
= π1 |= φ

π |= Fφ
def
= (π |= φ) t (π1 |= Fφ)

π |= φ U ψ
def
= (π |= ψ) t

(
(π |= φ) u (π1 |= φ U ψ)

)
Note that the interpretation does not necessarily

give a boolean value to each mvLTL formula. Rather,
it gives a truth value as an element of Q, as indicated
by the use of u and t in the right-hand side of the
definition.

The interpretation above is a straightforward ex-
tension of the standard, boolean semantics of LTL for-
mulas except one point: the “definition” for F and U
may be circular when π1 is identical to π. This cir-
cularity can be easily avoided by using the least fix-
point†, since the right-hand sides of the “definitions”
are monotone, and the least fixpoints exist for any set
of elements, as our domain is a complete lattice.

A counter-intuitive fact about the QBA-based
multi-valued logic is that logical equivalence is not the
same as equality. As an example, in the three-valued
logic L3, the value of U ↔ U (under the standard defi-
nition of ↔ in terms of t etc.) is not T, but U.

We define the semantics of a mvLTL formula φ
w.r.t. M by:

M |= φ
def
=

l
π∈N→S

(¬W(π) t (π |= φ))

where W is defined by:

W(π)
def
= I(π(0)) u (

l
i≥0

R(π(i), π(i+ 1)))

W(π) is the “weight” of the path π, which represents
the degree of “being a path in M”. In the definition,
we explicitly take the greatest lower bound.

Finally we state the Multi-Valued Model Checking
problem.

Definition 9 (mvMC problem). The multi-valued
model checking problem is to decide if (M |= φ) = >
holds. If it holds, we say that φ is valid in M.

It immediately follows that, to check the validity of
φ, we only have to check if there exists a path π (a coun-
terexample of φ) such that the value of (¬W(π))t(π |=
φ) is not >. By taking negation of both sides, we check
if W(π) u (π |= ¬φ) is not ⊥. The last check can be
done using the bit-sequence representation of QBA el-
ements explained earlier; we only have to check if there

†If we directly define the semantics of G, we should use
the greatest fixpoint.

is 1 in the bit sequence, which can be represented by
disjunction of all the bits.

In the next section, we present an algorithm to
perform such a check in the context of bounded model
checking.

3.3 Generalized Queries

In some applications, we need to check, for ` ∈ L, a
more general form (M |= φ) w `. For instance, the
specification G(received → F sent) of the example in
Sec. 2 does not always hold since the transmission may
be delayed infinitely in some exceptional case. However,
the specification should hold for normal cases, and we
would like, then, to check if:

(M |= G(received → F sent)) w S

We can cope with the generalized form as follows.
A counterexample of the query (M |= φ) w ` is a path
π such that

(W(π) u (π |= ¬φ)) 6v ¬`

It is easy to check if a certain value v is not equal to or
smaller than ¬`. For instance, suppose the underlying
QBA is embedded into order-5 BA (with 25 elements),
and ¬` is mapped to the bit sequence]10100 by this
embedding. To check v 6v ¬`, we only have to check if
at least one of the 2nd, 4th and 5th bits of v is 1, which
can be represented by disjunction.

In summary, we can cope with the generalized
queries with no extra cost, and hence we will ignore
the generalized queries in the subsequent sections.

4. Algorithms

This section discusses several possible algorithms for
multi-valued bounded model checking, and present our
algorithm.

4.1 Review of Classical Bounded Model Checking

Fig. 3 illustrates the process of classical Bounded Model
Checking.

〈M, φ, k〉
Encode BMC as

prop. formula
f

Convert prop.

formula to CNF
CNFSAT solver

Is satisfiable? Success.

Failure. Found

counterexample.

no

yes

Fig. 3 Diagram for classical Bounded Model Checking.

ANDRADE and KAMEYAMA: MULTI-VALUED BOUNDED MODEL CHECKING
5

The process can be rephrased in words as follows.

1. Given a Kripke structure, an LTL formula φ, and a
bound k > 0, it generates a propositional formula
f (with state variables x0, x1, . . . , xk) which ex-
presses a k-bounded model of ¬φ. More precisely,
f(x0, x1, . . . , xk) holds if and only if x0, x1, . . . , xk
is either a finite path or a looping path such that
¬φ holds along this path.

2. The formula f is converted to a conjunctive normal
form (CNF) since most SAT solvers accept CNF
only.

3. Finally a SAT solver decides if the CNF is satisfi-
able or not. If it is satisfiable, there is a counterex-
ample of length k. Otherwise, k is incremented
and the same procedure is repeated.

We have to iterate this process only finitely many
times, up to the completeness threshold: if there is no
counterexample until then, we can conclude that the
given specification is verified [11].

4.2 Overview of Multi-Valued BMC

The goal of the algorithms is to encode a multi-valued
bounded model checking problem as a boolean satisfia-
bility problem, which can be solved by the state-of-the-
art SAT solver. We must convert multi-valued entities
(models and formulas) to two-valued ones at some point
of our algorithm, and the embedding of QBA into BA
in the previous section makes such a conversion possi-
ble. The question is when we convert multi-valued ones
to two-valued ones, and we have several possibilities as
follows. (They are illustrated in Fig. 4.)

1. Naïve algorithm — route 1 → 3 → 6 → 7 — This
method converts the mvKS and mvLTL specifica-
tion to n 2-valued ones, and then solves the cor-
responding n instances of 2-valued BMC problems
separately. This method is the easiest way, but is
applicable only when the QBA is a BA, in which
case each bit in the bit sequence has no depen-
dency.

2. Reduction-based algorithm — route 2 → 4 → 6 →
7 — This method encodes the mvBMC problem
as a multi-valued propositional formula θ and then
reduces the formula θ to n 2-valued propositional
formulas representing each bit of θ. We then take
the conjunction of the n 2v-propositional formulas
as the translation of the original mvBMC model
and proceed with the BMC procedure as we would
do in classical BMC. This approach was investi-
gated for multi-valued boolean logic in [10] where
we reported results of some experiments.

3. Direct algorithm — route 2 → 5 → 7 — This
method is similar to the reduction-based one, ex-
cept that it does not actually convert (or reduce)
QBA to BA, which takes time and space. Rather,

we generate a single formula which represents the
conversion, and the size of the generated formula
has comparative length as the formula for each bit,
rather than the conjunction of all such formulas.

There is yet another possible algorithm; we trans-
late the encoded mvBMC problem (i.e. θ) to a multi-
valued clause form, mvCNF, and then pass it to a multi-
valued SAT solver such as CAMA [12] and CMV-SAT-1
[13]. However, these multi-valued SAT solvers rely on
the assumption that the set of logic values is totally or-
dered, which is not generally the case for QBA. There-
fore, we do not consider this algorithm in this paper.

Naïve conversion was studied in the context of
multi-valued CTL symbolic model checking [10], [14],
but it is much less efficient than the others, and there-
fore we concentrate on the reduction-based and direct
algorithms.

We note that while the embedding of QBA to BA
does not preserve negation, it is not a problem in our
development, since we first convert, using De Morgan
laws, every multi-valued formulas to the formulas in
Negation Normal Form (NNF), in which negation may
appear only in front of atomic propositions. This point
will be explained later.

Both algorithms for mvBMC, reduction-based and
direct, share the first step, step 2 in Fig. 4, also ref-
erenced as bounded model generation. Our algorithm
for bounded model generation is an extension of the 2-
valued case [8] and is the same one that we previously
published for BA [1].

〈Q,M, φ, k〉

2. Encode mvBMC

as mv-prop. formula

θ

5. Convert mv-prop.

formula to CNF
CNF

1. Reduce to 2-valued

model checking
〈Mi, φi, k〉

3. Encode BMC as

2v-prop. formula

∨
n

i=1 θ
(i)

6. Convert 2v-prop.

formula to CNF

4. Reduce mv-prop.

formula to n

2v-prop. formulas

7. SAT solver

Is satisfiable?

Success.
Failure. Found

counterexample.

no yes

Fig. 4 The possible paths to the mvBMC depicted as an ex-
tended flowchart diagram. Q is a QBA, M is the given model,
φ is the mvLTL specification to verify and k is the bound. The
numbers in the processes are for identification purpose only.

6
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

To illustrate the general idea of the bounded model
generation algorithm we present a simple example of
its application below.

Example 1. Let M be the model presented in Fig. 1,
over the logic Q6, the bound k = 2 and also let the
negation of the specification, already in NNF, be ψ =
Fsent. We represent the transition relation of the model
M by R(xi, xj).† So, following the definitions given in
[1], the bounded model generation outputs the following
multi-valued formula:

[[M, ψ]]2 = [[M]]2 ∧ [[Fsent]]2 (1)

[[M]]2 = I ′(x0) ∧
1∧

i=0

R′(xi, xi+1)

= I ′(x0) ∧R′(x0, x1) ∧R′(x1, x2) (2)

[[Fsent]]2 =

(
¬

(
2∨

l=0

R′(x2, xl)

)
∧ [[Fsent]]02

)

∨

(
2∨

l=0

(
R′(x2, xl) ∧ l[[Fsent]]02

))

=

¬

(
2∨

l=0

R′(x2, xl)

)
∧

 2∨
j=0

sentj


∨

 2∨
l=0

R′(x2, xl) ∧
2∨

j=0

sentj

 (3)

In the above set of equations, I ′ and R′ are mv-
propositional formulas that encode the set of initial
states and the transition relation of model M resp.
Equation (1) is the general form of the encoding for
the bounded model checking problem. Equation (2) is
the encoding for the model and its transition relation.
Equation (3) is the encoding for the given specification.
We used sentj as a shorthand for V ′(xj , sent), i.e., the
valuation of the atomic proposition sent in the state xj.

We have not specified how we represent I ′, R′,
and V ′, which depends on how we encode state vari-
ables x0, x1, · · · , xk. For this, we take a simple method
that encodes each state by a binary encoding as follows:
let m be the smallest integer not smaller than log2 |S|
(where |S| is the number of states). We introduce two-
valued propositional variables y0, y1, · · · , ym−1, and
represent each state by conjunction of positive or neg-
ative literals for these variables. For instance, the state
3 is represented by y0 ∧ y1 ∧ ¬y2 ∧ · · · ∧ ¬ym−1. There
are more efficient ways for this encoding in the case of
the two-valued BMC, for instance, representing a state
by a conjunction of atomic propositions. However, it
may not work for some multi-valued models, so we take

†Due to space constraints, we do not unroll the transi-
tion relation.

Algorithm 1 Reduction-based mvBMC
1: function redMvBmc(Q,M,φ,k)
2: k′ ← 0
3: while k′ < k do
4: k′ ← k′ + 1
5: ψ ← nnf(¬φ)
6: θ ← boundedModel(Q,M, ψ, k′)
7: n← |JQ|
8: θ′ ←

∨n
i=0 θ

(i) . θ′ is a 2v-prop. formula.
9: cnf← boolToCnf(θ′)

10: S ← satSolver(cnf)
11: if S 6= ∅ then . Found a counterexample.
12: return 〈false, S〉
13: end if
14: end while
15: return 〈true, ∅〉 . Property φ holds.
16: end function

this simple encoding. In summary, the formula output
by BMC generation contains two-valued propositional
variables y0, y1, · · · , ym−1, which we also call state vari-
ables.

4.3 Reduction-based Algorithm

The Reduction-based Algorithm takes the route 2 →
4 → 6 → 7 in Fig. 4 and we explain steps 4 and 6 in
this section.

Algorithm 1 shows a top-level description of the
reduction-based mvBMC procedure. The call to func-
tion boundedModel, generates a multi-valued propo-
sitional formula which expresses a bounded model
of length k. It slightly extends the classical algo-
rithm in the literature [8] for two-valued bounded
model checking. The resulting formula [[M,¬φ]]k con-
tains state variables x0, x1, . . . , xk, and expresses that
x0, x1, . . . , xk forms a counterexample of the given spec-
ification. We have proved that our mvBMC algorithm
is correct for an arbitrary finite Boolean algebra [10].

4.3.1 Reduce mv-prop formula to n 2v-prop formulas
(Step 4)

Line 8 is central in Algorithm 1, since it is where the
reduction from mv-propositional to 2v-propositional is
performed. Each formula θ(i) represents one bit (or one
layer) of the original mv-formula, i.e., the mv-formula
θ being reduced with respect to a single join-irreducible
element of Q.

The process of obtaining θ(i) is not straightforward
as in the BA case [10], since the embedding does not
preserve negation. Table 1 shows an example for the
negation in QBA L3.

Since the variables in the formula we are treating
are two-valued variables only, we can take each slice
(each bit) of the formula as follows.

Definition 10 (mv-Propositional Slicing). Given an
mv-propositional formula θ over a QBA Q, we define

ANDRADE and KAMEYAMA: MULTI-VALUED BOUNDED MODEL CHECKING
7

Lattice Value Repr. Negation Neg. Repr.
F]00 T]11

U]10 U]10
T]11 F]00

Table 1 Bitmap representation of lattice values for QBA L3
and their respective negations.

the 2-valued propositional formula θ(i) inductively as
follows:

For literals:


l(i)

def
= bi(l)

(¬l)(i) def
= bi(¬l)

y(i)
def
= y

(¬y)(i) def
= ¬y

For compos-
ite formulas:

{
(◦φ)(i) def

= ◦(φ(i))
(φ ◦ ψ)(i)

def
= φ(i) ◦ ψ(i)

Where y is a two-valued propositional variable
(state variable), bi : L→ {0, 1} is a function that maps
a lattice value to its “bit” of order i, assuming a binary
encoding for lattice values. The symbol ◦ is used as a
placeholder for logical operators such as conjunction.

4.3.2 Convert 2v-prop formula to CNF (Step 6)

The call to boolToCnf in Algorithm 1 represents
the conversion from 2v-propositional to CNF. In or-
der to generate as small CNFs as possible, we apply
the structure-preserving CNF conversion [15] to share
as many subformulas as possible.

Although sharing subformulas is performed in the
last step, the space-complexity of Reduction-based Al-
gorithm is not very good, since we generate n formulas
corresponding to n bits (which again corresponds to
each join-irreducible elements), and take the disjunc-
tion of them.

4.3.3 Correctness of Reduction-based Algorithm

Theorem 1. The reduction-based algorithm is sound
and complete, namely, given a mvMC problem
〈Q,M, φ〉 and a bound k, the algorithm generates a
counterexample of length up to k if and only if M |= φ
has a counterexample of length up to k.

Proof. The proof of this theorem consists of verifica-
tion of each part of the algorithm. Each step is rather
straightforward and can be proved by simple reasoning,
and thus omitted.

It is easy to see that, even for Multi-Valued Model
Checking, there is a completeness threshold c in the
sense of [11], for instance, the “diameter” of mvKS can
be such a threshold. It follows that, by repeating the
reduction-based algorithm for k = 1, 2, · · · , c, we can
verify the given specification.

4.4 Direct Algorithm

We now come to Direct Algorithm which we think is the
best among the algorithms. It takes route 2 → 5 → 7.
In this section we cover step 5.

The Direct Algorithm has been developed based on
Reduction-based Algorithm with one additional idea:
rather than generating all the sliced formulas, we in-
troduce propositional variables to represent each slice
(bit), and leave the decision to the SAT solver, as to
which slice must actually be generated. Besides this
point, Direct Algorithm is the same as Reduction-based
one; we use negQ(p, i) for negation of atomic proposi-
tions, and we share as many sub-expressions as possible
during the CNF generation.

To understand the key idea, let us first see an ex-
ample.

Example 2. Consider algebra B3 (Fig. 2(f)). We in-
troduce two propositional variables q0 and q1 to repre-
sent each slice number as a binary number. Actually we
only have 3 slices (one for each join-irreducible element
of B3), so we will not use all possible combinations of
q0 and q1. For instance, the 0th slice is (¬q0∧¬q1), the
1st is (q0 ∧¬q1) and so on.† A lattice element]110 has
the bit 1 in the 0th and 1st slices, hence it is represented
by (¬q0∧¬q1)∨(q0∧¬q1), or simply ¬q1. Then an mv-
formula (x = s0)∧]110 is represented by (x = s0)∧¬q1.
This translation increases the size of the resulting for-
mula, compared to the original mv-formula, much less
than the Reduction-based algorithm does.

Note that the CNF generation is done without any
reduction from mv-propositional formulas to 2-valued
ones.

4.4.1 Convert mv-prop formula to CNF (Step 5)

A high level description of our approach to mvBMC
is presented in Algorithm 2. This algorithm differs
from the reduction-based one in the call to function
mvPropToCnf, converts a multi-valued propositional
formula to a 2-valued CNF, which is key to the algo-
rithm’s efficiency and is described in Definition 12.

Definition 11 (Representation of Lattice Values).
For a QBA Q where n = |JQ|, let h = dlog2(n)e and
q0, . . . , qh−1 be propositional variables.

• For a natural number i such that 0 ≤ i < n, we
define Qp(i) for 0 ≤ p < h by:

Qp(i) =

{
qp if the pth bit of i is 1
¬qp otherwise

and then R(i) is defined as Q0(i) ∧ · · · ∧ Qh−1(i).
†q0 corresponds to the least significant bit.

8
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

Algorithm 2 Direct Algorithm for mvBMC
1: function mvbmc(Q,M,φ,k)
2: k′ ← 0
3: while k′ < k do
4: k′ ← k′ + 1
5: ψ ← nnf(¬φ)
6: θ ← boundedModel(Q,M, ψ, k′)
7: cnf← mvPropToCnf(Q, θ)
8: S ← satSolver(cnf)
9: if S 6= ∅ then . Found a counterexample.

10: return 〈false, S〉
11: end if
12: end while
13: return 〈true, ∅〉 . Property φ holds.
14: end function

Note that R(i) is the binary representation of i in
terms of q0, . . . , qh−1. For instance, if h = 5, then
R(6) is ¬q0 ∧ q1 ∧ q2 ∧ ¬q3 ∧ ¬q4, which is 00110
as a binary number.

• For an element ` of Q, we define

Rep(`) =
∨

i∈Ones(`)

R(i)

where Ones(`) = {i | `’s ith bit is 1}.

It is possible to use circuit minimization techniques
to simplify the above representation.† Note also that,
we need only dlog2(n)e propositional variables to rep-
resent the bits, where n = |JQ|.

Definition 12 (Direct CNF Conversion). Let f be a
multi-valued propositional formula over a QBA Q, and
h = dlog2(n)e, where n = |JQ|.

1. Generate h propositional variables q0, . . . , qh−1.
2. Replace any lattice element ` in f by Rep(`).
3. If n < 2h, let f ′ be f ∧

∧
n≤i<2h ¬R(i). If n = 2h,

let f ′ be f . (exclude spurious bits)
4. Apply the structure-preserving conversion to f ′.

4.4.2 Correctness of Direct Algorithm

The algorithm above is guaranteed to be correct [10].
For simplicity we assume that n = 2h for some natural
number h where n = |JQ|.

Theorem 2. The direct algorithm is also sound and
complete.

Proof. We can prove this theorem by reducing it to the
previous theorem as follows: Suppose Direct Algorithm
generates the formula ψ in CNF. Then, by definition,
for each i less than n, the formula:

ψ ∧Q0(i) ∧Q1(i) ∧ · · · ∧Qh−1(i)

†Our prototype implements the Quine-McCluskey min-
imization algorithm.

is equivalent to the i-th sliced formula generated by
Reduction-based Algorithm. Hence, for some truth-
assignment for q0, q1, · · · , qh−1, ψ is satisfiable iff the
disjunction of all the sliced formulas generated by
Reduction-based Algorithm is satisfiable. It follows
that, soundness and completeness of Reduction-based
Algorithm imply those of Direct Algorithm.

Since Direct Algorithm is designed as a refinement
of Reduction-based Algorithm, we can naturally expect
the former’s performance is better than the latter’s. We
will confirm this observation in the next section.

5. Experiments and Discussion

We have built a prototype that implements both the
reduction-based algorithm and the direct algorithm in
Section 4. We implemented the prototype in the Scala
programming language over the Java Virtual Machine
version 1.6. Algorithm 2 shows the direct mvBMC al-
gorithm, and Algorithm 1 shows the reduction-based
version. Note that not only CNFs but also the rep-
resentation of lattice elements are cached and shared,
hence they are processed only once. For SAT solving,
we used SAT4J [16] as an embedded SAT solver. We
have executed the tests on a machine with 4.0GiB of
RAM and an Intel Core i5 M430 (2.27GHz) processor
running Ubuntu Linux 10.04 operating system.

The models used in our experiments belong to four
different groups.

1. Systems modeled after “real world” examples,
taken from the literature:

a. The coffee machine system (CMS) [17].
b. The message relay system (MRS) [7].

2. Systems that form a simple loop, that we called
Ln systems. All Ln systems have exactly n
states and n variables on each state. Fig. 5(a)
shows the graphic representation for the L4 sys-
tem. Transitions are 2-valued, with the truth val-
ues > or ⊥ only. The valuation function is given by
V(si, xj) = tord(Q, i+ j), where tord is a selection
function that obeys an arbitrary total order over
the elements of Q. Then Fxi is valid in this model
if |Q| ≥ n, and not valid otherwise, in which case
there exists a counterexample of length k ≤ |Q|−1.

3. System that form a completed connected graph,
i.e., where we have transitions from each state to
all the other states in the system, that we called Tn
systems. All Tn systems have exactly n variables
on every state and the weight of every transition
is assigned according to an arbitrary order from
the QB algebra over which the system is defined.
Fig. 5(b) shows the T5 system.

The reason we introduced the artificial systems, Ln

ANDRADE and KAMEYAMA: MULTI-VALUED BOUNDED MODEL CHECKING
9

and Tn, is that we needed models that could scale on
a parameter. As can be seem by their description the
two artificial models we presented are scalable in the
parameter n what makes possible to obtain the statis-
tical data we needed.

S0

x 1 = S S
x2=DK
x3=DC
x4=NN

TT

S1

x 1 = S S
x2=DK
x3=DC
x4=NN

TT

S2

x 1 = S S
x2=DK
x3=DC
x4=NN

TT

S3

x 1 = S S
x2=DK
x3=DC
x4=NN

TT

TT

(a) Loop model L4.

S0

x 1 = S S
x2=DK
x3=DC
x4=NN
x5=FF

TT
TT

S1

x 1 = S S
x2=DK
x3=DC
x4=NN
x5=FF

TT

S2

x 1 = S S
x2=DK
x3=DC
x4=NN
x5=FF

TT

S3

x 1 = S S
x2=DK
x3=DC
x4=NN
x5=FF TT

S4

x 1 = S S
x2=DK
x3=DC
x4=NN
x5=FF

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

(b) Total model T5.

Fig. 5 Example of the artificial test models used to collect
statistics of the prototype.

We have run tests with both algorithms for a num-
ber of Ln and Tn instances. Of course, due to space
limitations we can not show all these experimental re-
sults here, but we selected one instance of each of these
systems to illustrate their behavior. Since we want to
compare the two real world systems, CMS and MRS,
with the two artificial ones we choose instances L7 and
T7 since their size is approximately equal to the size of
the coffee machine and message relay systems.

Fig. 6 shows the evolution of the four selected sys-
tems number of CNF variables as a function of k for
both algorithms, and Fig. 7 shows the number of CNF
clauses also as a function of k. As can be seen, for
all systems the growth of the curves for the direct algo-
rithm is much slower than the growth for the reduction-
based algorithm, with a much more accentuated reduc-
tion for the number of CNF clauses. We call attention
to the fact that even if the reduction in the number
of variables is approximately linear, the absolute value
of this reduction can be significant, with a maximum
of more than 104 variables for model MRS in the data

C
N
F
V
a
r
ia
b
le
s

Fig. 6 Average number of CNF variables.

C
N
F
C
la
u
s
e
s

Fig. 7 Average number of CNF clauses.

shown. Even more impressive was the reduction in the
number of CNF clauses. Where the maximum differ-
ence between the reduction-based and the direct algo-
rithm reached about 6.5 million clauses.

C
N
F
C
P
U

T
im

e
(m

s
)

Fig. 8 Average mv -prop→CNF conversion runtime.

Maybe of greater interest is the behavior of both

10
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

S
A
T

C
P
U

T
im

e
(m

s
)

Fig. 9 Average SAT solver runtime.

algorithms regarding their running time. For that mat-
ter, since the bounded model generation phase is com-
mon to both algorithms, we concentrated on the CNF
conversion time. Fig. 8 show the CNF conversion CPU
time of the example model for both algorithms. As can
be seen, the runtime evolution it is much less consistent
than that of the number of CNF variables or clauses,
but it is still clearly visible that the direct algorithm
has a much lower runtime cost than the reduction-based
one. Possible explanations for the inconsistency of the
evolution of the CNF conversion runtime are the fact
that the number of shared sub-expressions is not linear
in k and the action of the garbage collector of the Java
Virtual Machine which we could not isolate during the
collection of data.

Fig. 9 shows the SAT solver CPU running time for
the selected models. As we observed for CNF conver-
sion, the SAT solver running time does not express a
consistent behavior when compared to the number of
CNF variables or CNF clauses. This is a known issue
and we do not elaborate on the topic. What we do want
to call attention for is the fact that, regardless of the
inconsistency of the SAT solver runtime evolution, in
all tested models, the running time for the direct ver-
sion of was much smaller than that for the reduction
based version.

Since our experiments are for relatively small mod-
els and our implementation may be sub-optimal we can-
not generalize this results at the moment. But we con-
sider these results very encouraging.

6. Conclusion

In this article we presented an extension of classical
LTL model-checking to reasoning with quasi-boolean
algebras and described the notion of multi-valued
Kripke structures. We also presented a translation of
the LTL mvBMC problem over quasi-boolean algebras
to a SAT problem. We then presented two algorithms
for LTL mvBMC based on this translation, namely the

reduction-based algorithm and the direct algorithm.
As part of our experiments we built a prototype

that implements both algorithms, and our experiments
confirm our claims that for the direct algorithm the
number of CNF variables and clauses generated by the
translation is linear in the size of the problem instance.
We also observed a significant reduction in the runtime
for the CNF conversion phase in favor of the direct
algorithm. This behavior is much more efficient than
the one presented by the reduction-based algorithm in
both runtime and space.

As for continuing our research, we expect the
method described here to be useful for dealing with
model abstraction. Also in this line of research, we have
already started some theoretical work on the generaliza-
tion of queries for multi-valued bounded model check-
ing. We foresee that this generalization technique will
also be useful in the context of model abstraction, so we
surely hope to conduct investigations in this area. One
other path of future work is to investigate the impact
of optimization techniques known for classical bounded
model checking for the multi-valued case.

References

[1] J.O. Andrade and Y. Kameyama, “A direct algorithm for
multi-valued bounded model checking,” ATVA 2008: 6th
International Symposium on Automated Technology for
Verification and Analysis, Lecture Notes in Computer Sci-
ence, pp.80–94, Springer-Verlag, 2008.

[2] E.M. Clarke, O. Grumberg, and D.A. Peled, Model Check-
ing, The MIT Press, 1999.

[3] M.C. Fitting, “Many-valued modal logics,” Fundamenta In-
formaticae, vol.XV, pp.235–254, 1991.

[4] M.C. Fitting, “Many-valued modal logics II,” Proc.
LFCS’92, Springer-Verlag, 1992.

[5] M. Chechik, B. Devereaux, S. Easterbrook, Y.C. Lai, and
V. Petrovykh, “Efficient multiple-valued model-checking us-
ing lattice representations,” Lecture Notes in Computer Sci-
ence, vol.2154, pp.441–455, 2001.

[6] D.M. Miller, “Multiple-valued logic design tools,” Proc. 23rd
International Symposium on Multiple-Valued Logic, Sacra-
mento, CA, USA, pp.2–11, IEEE Computer Society, May
1993.

[7] S. Nakajima, “Behavioural analysis of component frame-
work with multi-valued transition system,” APSEC ’02,
Washington, DC, USA, p.217, IEEE Computer Society,
2002.

[8] A. Biere, E.M. Clarke, M. Fujita, and Y. Zhu, “Symbolic
Model Checking Using SAT Procedures Instead of BDDs,”
Design Automation Conference, pp.317–320, 1999.

[9] M. Chechik, B. Devereaux, S. Easterbrook, and
A. Gurfinkel, “Multi-valued symbolic model-checking,”
ACM Transaction on Software Engineering and Method-
ology, vol.2, no.4, pp.371–408, 2003.

[10] J.O. Andrade and Y. Kameyama, “An algorithm for
bounded multi-valued model checking,” Proc. of the 4th

Symposium on Science and Technology for System Verifica-
tion (DSW 2007), Nagoya, Japan, pp.11–20, Japan Society
for Software Science and Technology, 2007.

[11] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic
model checking without BDDs,” TACAS’99, Lecture Notes
in Computer Science, vol.1579, pp.193–207, 1999.

ANDRADE and KAMEYAMA: MULTI-VALUED BOUNDED MODEL CHECKING
11

[12] C. Liu, A. Kuehlmann, and M.W. Moskewicz, “CAMA: A
multi-valued satisfiability solver,” Proceedings of the 2003
IEEE/ACM international conference on Computer-aided
design, ICCAD ’03, Washington, DC, USA, pp.326–333,
IEEE Computer Society, 2003.

[13] S. Jain, E. O’Mahony, and M. Sellmann, “A complete
multi-valued SAT solver,” Proceedings of the 16th in-
ternational conference on Principles and practice of con-
straint programming, CP’10, Berlin, Heidelberg, pp.281–
296, Springer-Verlag, 2010.

[14] A. Gurfinkel and M. Chechik, “Multi-valued model check-
ing via classical model checking,” CONCUR 2003 – Concur-
rency Theory, 14th International Conference, ed. R.M. Ar-
madio and D. Lugiez, Lecture Notes in Computer Science,
vol.2761, Marseille, France, pp.263–277, Springer, Septem-
ber 2003.

[15] D. Plaisted and S. Greenbaum, “A structure-preserving
clause form translation,” Journal of Symbolic Computation,
vol.2, pp.293–304, 1986.

[16] D. Le Berre and A. Parrain, “The SAT4J library, release
2.2,” JSAT Journal on Satisfiability, Boolean Modeling and
Computation, vol.7, pp.59–64, 2010.

[17] M. Chechik, B. Devereaux, and S. Easterbrook, “Im-
plementing a multi-valued symbolic model checker,”
TACAS’01, Lecture Notes in Computer Science, vol.2031,
pp.404–419, Springer, 2001.

Jefferson O. Andrade (member)
received the Diploma of Engineer in Com-
puter Engineering and Master of Infor-
matics degrees from the Federal Univer-
sity of Espirito Santo, Brazil, in 1995
and 2001, resp. He is currently pursuing
the Ph.D. in Engineering at the Graduate
School of Systems and Information Engi-
neering in the University of Tsukuba. He
worked with software development com-
panies in Brazil from 1995 to 2003 and

he is a lecturer at the Federal Institute of Education, Science
and Technology of Espirito Santo since 2003. His research inter-
ests include formal methods in software engineering, verification
and validation of software and logical methods in artificial intel-
ligence. He is a member of ACM, IEICE and SBC.

Yukiyoshi Kameyama (member) re-
ceived the B. Sc. and M. Sc. degrees from
the University of Tokyo in 1985 and 1987,
resp, and the Ph. D. degree from Kyoto
University in 1996. He worked as a fac-
ulty at Tohoku University and Kyoto Uni-
versity from 1987 to 2001, and he is a
professor at the University of Tsukuba.
His research interests include program-
ming logic and software verification. He
is a member of ACM, JSSST and IPSJ.

